Effects of Thyroxine Exposure on Osteogenesis in Mouse Calvarial Pre-Osteoblasts

نویسندگان

  • James J. Cray
  • Kameron Khaksarfard
  • Seth M. Weinberg
  • Mohammed Elsalanty
  • Jack C. Yu
چکیده

The incidence of craniosynostosis is one in every 1,800-2500 births. The gene-environment model proposes that if a genetic predisposition is coupled with environmental exposures, the effects can be multiplicative resulting in severely abnormal phenotypes. At present, very little is known about the role of gene-environment interactions in modulating craniosynostosis phenotypes, but prior evidence suggests a role for endocrine factors. Here we provide a report of the effects of thyroid hormone exposure on murine calvaria cells. Murine derived calvaria cells were exposed to critical doses of pharmaceutical thyroxine and analyzed after 3 and 7 days of treatment. Endpoint assays were designed to determine the effects of the hormone exposure on markers of osteogenesis and included, proliferation assay, quantitative ALP activity assay, targeted qPCR for mRNA expression of Runx2, Alp, Ocn, and Twist1, genechip array for 28,853 targets, and targeted osteogenic microarray with qPCR confirmations. Exposure to thyroxine stimulated the cells to express ALP in a dose dependent manner. There were no patterns of difference observed for proliferation. Targeted RNA expression data confirmed expression increases for Alp and Ocn at 7 days in culture. The genechip array suggests substantive expression differences for 46 gene targets and the targeted osteogenesis microarray indicated 23 targets with substantive differences. 11 gene targets were chosen for qPCR confirmation because of their known association with bone or craniosynostosis (Col2a1, Dmp1, Fgf1, 2, Igf1, Mmp9, Phex, Tnf, Htra1, Por, and Dcn). We confirmed substantive increases in mRNA for Phex, FGF1, 2, Tnf, Dmp1, Htra1, Por, Igf1 and Mmp9, and substantive decreases for Dcn. It appears thyroid hormone may exert its effects through increasing osteogenesis. Targets isolated suggest a possible interaction for those gene products associated with calvarial suture growth and homeostasis as well as craniosynostosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of In Utero Thyroxine Exposure on Murine Cranial Suture Growth

Large scale surveillance studies, case studies, as well as cohort studies have identified the influence of thyroid hormones on calvarial growth and development. Surveillance data suggests maternal thyroid disorders (hyperthyroidism, hypothyroidism with pharmacological replacement, and Maternal Graves Disease) are linked to as much as a 2.5 fold increased risk for craniosynostosis. Craniosynosto...

متن کامل

P2X7 receptors on osteoblasts couple to production of lysophosphatidic acid: a signaling axis promoting osteogenesis

Nucleotides are released from cells in response to mechanical stimuli and signal in an autocrine/paracrine manner through cell surface P2 receptors. P2rx7-/- mice exhibit diminished appositional growth of long bones and impaired responses to mechanical loading. We find that calvarial sutures are wider in P2rx7-/- mice. Functional P2X7 receptors are expressed on osteoblasts in situ and in vitro....

متن کامل

Regulation of Calvarial Osteogenesis by Concomitant De-repression of GLI3 and Activation of IHH Targets

Loss-of-function mutations in GLI3 and IHH cause craniosynostosis and reduced osteogenesis, respectively. In this study, we show that Ihh ligand, the receptor Ptch1 and Gli transcription factors are differentially expressed in embryonic mouse calvaria osteogenic condensations. We show that in both Ihh-/- and Gli3Xt-J/Xt-J embryonic mice, the normal gene expression architecture is lost and this ...

متن کامل

3-Methylcholanthrene, which binds to the arylhydrocarbon receptor, inhibits proliferation and differentiation of osteoblasts in vitro and ossification in vivo.

3-Methylcholanthrene (3MC) is a ligand for arylhydrocarbon receptor (AhR), which binds dioxin. We examined the effects of 3MC on the proliferation and differentiation of osteoblasts using cultures of rat calvarial osteoblast-like cells (ROB cells) and mouse calvarial clonal preosteoblastic cells (MC3T3-E1 cells). Analysis by RT-PCR revealed that the mRNAs for AhR and AhR nuclear translocators w...

متن کامل

The homeoprotein engrailed 1 has pleiotropic functions in calvarial intramembranous bone formation and remodeling.

The membranous bones of the mammalian skull vault arise from discrete condensations of neural crest- and mesodermally-derived cells. Recently, a number of homeodomain transcription factors have been identified as critical regulators of this process. Here, we show that the homeoprotein engrailed 1 (EN1) is expressed during embryonic and perinatal craniofacial bone development, where it localizes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013